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Abstract

This article shows that scale space theory and spatial colour models can
be quantitatively applied to light microscopy images through the use of
computer software algorithms. The use of scale space is particularly help-
ful in obtaining information about an image in which the conditions were
less than optimal, thus reducing the pressure and time during experi-
mental setup and data acquisition. In particular, this article considers two
dimensional brightfield and fluorescence microscopy. However, the princi-
ples described can be applied to other forms of microscopy, including
three dimensional images and time series images, thus introducing a
number of avenues for assisting in future research.

Introduction 

Both structural features and colour are powerful cues in human vision to
distinguish objects like cells or tissue regions in light microscopy. Taking
these structural features or geometry and colour into consideration in
image processing often enables a more robust segmentation than based
on traditional thresholding. However, spatial structures are not easily cap-
tured in an algorithm. Even worse, a common language for explaining the
variety of shapes in biological preparations to an image processing sys-
tem is presently not available to the biologist.

Closest to what is manageable for an image processing system nowadays,
and easily grasped by a human expert, is the decomposition of shapes
into local primary details, like ‘bended’, ‘elongated’, ‘circular’, convex
here and concave there, and so on. Such local shape directives are math-
ematically described by differential geometry, which provides one of the
tools for describing shapes of objects. However contrary to the ideal
world of mathematics, in the real world under the microscope, the aper-
tures with which we observe the world are not infinitesimally small, but
have a certain size and spatial extent and are influenced by small pertur-
bations, deformation and noise.

Linear scale space provides us the framework of measuring, or better
estimating, those mathematical quantities, as discussed in Koenderink
(1984), Lindeberg (1990), Lindeberg (1994), ter Haar Romeny (1994).
The scale space framework tells us how differential geometry can be
applied to image processing. The mathematical derivative operator, the
basic tool for differential geometry, is replaced by a convolution of the
image with the derivatives of a Gaussian kernel. Analysis of objects of a
particular size is done by studying the structure at the appropriate scale,
given by the standard deviation of the kernel. By using the Gaussian ker-
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nel with a certain scale σ, it is possible to select cells,
nuclei and tissue regions of certain size and shape
(Florack et al., 1992). In this way the scale space
framework enables the robust extraction of local shape
features from light microscopical images. The recent
development of the scale space framework to combine
local shape, hence spatial detail, with colour, thus spec-
tral information, extends its applicability from single
stained preparations to full colour preparations
(Koenderink & Kappers, 1998; Geusebroek, 2000;
Geusebroek et al., 2001). In this paper we advocate the
use of the scale space framework, and show a few suc-
cessful biological image processing applications.

Before we continue we will first give an overview of the
symbols used in this article and which might help to
explore the literature on scale space. The image itself is
described as L (from Luminance), while Lx and Ly are
the first order Gaussian derivatives in the X and Y direc-
tion of the 2D image. Lx and Ly may be regarded as the
edges in the image for the X and Y direction respec-
tively. Lxx, Lyy, etc. are the second and higher order
derivatives. For the Gaussian colour model, E (from
Emissivity) is the zero order Gaussian derivative to
wavelength λ, Eλ and Eλλ are the first and second order
derivative to λ. Note that E in the Gaussian colour

model is just
another nota-
tion for L in
l u m i n a n c e
(grey) scale
space. Hence,
a colour scale
space is an
extension of
the echromatic
l u m i n a n c e
scale space by
two chromatic
entities Eλ and
Eλλ. The chro-
maticity Eλ

represents the opponent colours yellow and blue,
whereas Eλλ represents the opponent colours red and
green.

In principle we can look at an image as to a landscape
in which we describe mathematically the shapes we see
(Fig. 1). In the case of bright objects on a dark back-
ground (or vice versa) the problem can in most cases
be considered to be the detection of elliptic patches
and ridges, depending on their shape, either round or
elongated (Koenderink, 1984; Florack et al., 1993).

Applying scale space to intensity microscopy

Microscopy images acquired with a grey-level (B/W)
camera contain structural features for which grey-level
scale space provides a robust detection framework. The
work of J.J. Koenderink provides us with the theoretical
basis for this approach. From his and other research we
know that the linear scale space framework offers robust
structural feature selection for image distortion, noise
and intensity changes. Feature detectors can be con-
structed based on differential invariants which can be
designed such that robustness against changes in illu-
mination condition and signal-to-noise ratio is obtained.
This is an important feature in light microscopy.

As a general example of the
use of scale space to
microscopy, we can consid-
er two problems. In the first
example we will apply the
principles of scale space to
the detection of nuclei in
fluorescence microscopy.
The second example shows
us the detection of neurites
in brightfield microscopy.

Cells were cultivated in
COSTAR™ clear-bottom 96
well plates. Nuclei were
stained with Hoechst

Fig. 1. The luminance image on the left is presented on the right as a 3D landscape with hills and valleys.

Fig. 2. Cell nuclei acquired with a Photonic Science® ISIS-3™ intensified camera at 40� magni-
fication on a Carl Zeiss® Axiovert 135™ inverted microscope. Hoechst 33342™ stained cell
nuclei shown on the left and the result of elliptic patch detection shown on the right (green over-
lay). Field of view approximately 500µm.
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33342™. Images were acquired on a Carl Zeiss®

Axiovert 135™ inverted microscope at 40� magnifica-
tion with a Photonic Science® ISIS-3™ intensified camera.
By using an intensified camera we are able to detect
extremely faint fluorescence signals without the need for
temporal integration of the signal, thereby minimising
the time needed to acquire an image. The use of an
intensified camera results in a considerable reduction in
signal-to-noise ratio (SNR).
The acquired images were
analysed on a Silicon
Graphics® O2™ workstation
with software developed in
SCIL Image 1.4.1™ (van
Balen et al., 1994).

Figure 2 shows the result of
applying the feature detec-
tor for bright elliptic patch-
es on a noisy fluorescence
image. At the appropriate
scale (σ) of 9.0 we can eas-
ily detect the cell nuclei
amidst the noisy back-
ground. The scale correlates
to the size of the objects in
the image we want to select
and is a measure for the
spatial integration by the
Gaussian kernel. The scale
space equation solved is
given by:

Lxx < 0 and LxxLyy - Lxy
2 > 0

Linear scale space allows us
to detect the bright spots,
even in very noisy images
like Fig. 2 (Lindeberg,
1993). Instead of temporal
integration to improve the

SNR, the scale space frame-
work uses the Gaussian filter
to integrate the spatial extent,
hence improves the SNR.

Another example of a fea-
ture detector is shown in Fig.
3. Detection of dark ridges
in brightfield microscopy of
neurites, the scale of the
Gaussian kernel σ=2.0 and
the threshold t=1.0. In this
example the filter looks at
the local difference in inten-
sity gradients (Lpp) and the
response of the filter is a
measure for the difference in
the intensity gradient in

orthogonal directions (Steger, 1998). The applied thresh-
old is a measure for the minimum level of linearity for a
pixel to be considered being part of a ridge or line.

Lpp > 4.0 * t / σ2

The expression is invariant to a change in illumination,
or a non-uniform illumination (Fig. 3). The same princi-

Fig. 3. An example of brightfield microscopy of a neural cell and its neurites on the left and the
result of applying a filter for dark ridges shown on the right. Despite the uneven illumination, the
proposed method is clearly capable of segmenting the neurites. Neurites are typically 50µm across.

Fig. 4. Colour ridge detection (on the right) of a skin tissue section illuminated by a halogen bulb
at 4000K (top) and 2600K (bottom) colour temperature. Image taken with a Carl Zeiss
Axioskop. Field of view approximately 1.5mm.
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ple can be applied to other images in which elongated
structures need to be detected. See Geusebroek et al.,
2001a for the application of this technique to heart tis-
sue segmentation. Other examples include Spirochetes
stained with a Warthin-Starry silver stain or myelin
sheaths stained black with Toluidin blue in a peripheral
nerve preparation, in which case the circular black rings
are considered to be dark ridges.

Another application of scale space in microscopy is in
robust real-time autofocussing in automated microscopy.
The first order Gaussian derivative can be used as a mea-
sure for calculating a focus score. By increasing the scale
of the derivative, even images with an extremely low SNR
can be reliably focused. A patented application of this
principle is already in use
for high-volume automated
microscopy (Geusebroek et
al., 2000a).

Applying the spatial
colour model

For colour light microscopy
the spatial colour model as
proposed by J.J.
Koenderink and J.M.
Geusebroek to select dif-
ferent coloured regions and
objects allows for elegant
solutions in light
microscopy (Koenderink &
Kappers, 1998; Geuse-
broek, 2000; Geusebroek
et al., 2001). The method-
ology applies to both
brightfield microscopy as
well as fluorescence
microscopy. In the spatial
colour model the visible

spectrum is probed with a
Gaussian kernel (E) and its
first (Eλ) and second order
derivative (Eλλ) relative to
wavelength (λ), all centred
on 520 nm and with a scale
sigma (σ) of 55.0 nm.
These theoretical values are
derived from the human
visual system and are well
approximated by RGB cam-
eras. A 3CCD colour cam-
era ‘probes’ the visible
spectrum more or less
equivalent to the human
visual system. After a linear
transformation of the RGB
values, equivalent to the
Gaussian colour model, dif-

ferential invariants can be constructed which are insen-
sitive to changes in illumination colour temperature and
illumination intensity.

Figure 4 shows the robust detection of colour ridges in
varying conditions of illumination. The colour tempera-
ture of the halogen bulb was changed from 4000K
(top) to 2600K (bottom) and the result of this change
is shown. The ridge detection is only determined by the
colour transitions in the underlying sample and is insen-
sitive to the change in illumination conditions. Certainly
in long-term experiments in which large numbers of
samples need to be compared or in the day to day
changes in illumination conditions, this feature is a seri-
ous advantage in quantitative microscopy.

Fig. 5. TetraSpeck™ 4.0 µm beads photographed using optical filter sets appropriate for DAPI,
fluorescein, rhodamin and Texas Red dye (left) and the result of colour detection with the spatial
colour model (right). The field of view is about 25 µm. Courtesy of Molecular Probes, Inc.

Fig. 6. Blood smear, Giemsa stain. Courtesy of University of Western Australia, Department of
Anatomy and Human Biology. Blood cells are typically 5µm in diameter.



Vol. 37/3 Proceedings RMS September 2002 165

Not only does the spatial colour model allow us to
detect colour transitions, but also the detection of dif-
ferent colours as such. Figure 5 shows one possible
application for the spatial colour model in fluorescence
microscopy. The different colours are easily selected by
applying a combination of spatial colour derivatives.
Combining several derivatives allows us to fine tune the
spectral range we want to select. The spatial integration
by the Gaussian kernel (σ=2.0) allows for improving
the SNR, which is an important feature in fluorescence
microscopy. The different colours are selected by:

Red: Eλ>0, Eλλ>0, Eλ-Eλλ<0
Green: Eλ>0, Eλλ<0
Blue: Eλ<0, Eλλ-Eλ>0
Orange: Eλ>0, Eλλ>0, Eλλ-Eλ>0

In Figure 6 an example is shown of the application of
the spatial colour model to a blood smear and the dis-
crimination between the erythrocytes and leukocytes. In
a second step the cell nuclei of the leucocytes are dis-
criminated from the cytoplasm based on their colour.
Notice the use of the scale to include the spatial extent
of the coloured cells.

Erythrocytes: Eλ>0, Eλ+Eλλ>0; σ=0.5
Leucocytes: Eλ<0; σ=12
Leucocyte nuclei: Eλ<0, Eλλ>0; σ=3

Combining scale space and the spatial colour
model

Scale space not only allows
for feature detection on its
own in grey value images,
but can also be combined
to detect objects of a cer-
tain colour and shape, such
as shown in Fig. 7. In this
case the magenta stained
carbohydrates are selected
from their background by
applying a feature detector
for elliptic patches in com-
bination with a spatial
colour model detector for
magenta, scale σ=2.0.

Using the detector for
magenta on its own would
also select the magenta
stained brush border lining
the gut lumen. The magen-
ta elliptic patches detector
is given by:

Lxx>0, LxxLyy-Lxy
2>0 and

Eλλ-Eλ>0

Anisotropic scale space

Besides the use of linear
scale space as shown in the previous examples, the
Gaussian kernel can also be modified to result in a more
directionally oriented detection (Geusebroek et al.,
2002; Seinstra et al., 2001; Weickert, 2001). An
anisotropic filter allows us to align the filter with an
elongated structure, such as a neurite or an image of
the nematode C. elegans to name a few (figure 8). In
this example, C. elegans nematodes were dispensed
into a COSTAR™ clear-bottom 384 well plate with a
COPAS™ BIOSORT (Union Biometrica, Inc.) and grey
value images were acquired on a Carl Zeiss® Axiovert
135™ at 5� magnification. This resulted in images with
an uneven and varying background and containing
touching and crossing structures. The directional
response of the filter gives it a clear advantage over the
isotropic filter, as it allows an even more robust selec-
tion of elongated objects with a high sensitivity.

Discussion and conclusion

In this article we have shown that scale space and the
spatial colour model can be applied to light microscopy.
Structural features and colour can be detected sepa-
rately or they can be combined to detect objects for
quantitative microscopy. Scale space combined with the
spatial colour model provides the scientist interested in
quantitative microscopy with a theoretical framework
from which several algorithms can be developed. These

Fig. 7. P.A.S. stain for carbohydrates (goblet cells, gut) stain magenta - elliptic patches. Field of view
approximately 0.5mm. Courtesy of Department of Pathology & Microbiology, University of Bristol, UK.

Fig. 8. An image from C. elegans taken at 5� magnification in a 384 multiwell plate, showing consid-
erable illumination inequality (left). The result of applying an anisotropic filter for dark ridge detection is
shown on the right. Image taken with an Adinuec MX5™ camera. Field of view approximately 500µm.
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algorithms allow us to meet the needs of the cell biolo-
gist, tissue morphologist or model organism researcher,
to name a few.

The robustness of the feature detectors is very useful in
developing robust algorithms for the detection of
objects under varying or less than optimal conditions.
By using scale space, experimental conditions may be
relaxed, thereby reducing the pressure on the
researcher to optimize the experimental setup, and
relaxing the burden to maintain the quality over time.
This optimisation is often a very time consuming
process, which has an impact on the resources needed
to do the experiments. In highly automated high-vol-
ume industrial research in biotechnology and pharma-
ceutical industry, day-to-day variations are unavoid-
able.

The theoretical basis of scale space allows us to reduce
the time needed to develop an algorithm, while at the
same time retaining the flexibility to use the developed
algorithm under varying conditions. This combination
can be of significant importance in an increasingly com-
petitive environment, to allow for complex and still reli-
able analysis of images in light microscopy.

Although we limited ourselves in this article to 2D
brightfield and fluorescence microscopy, the principles
of scale space can be applied to other forms of
microscopy, 3D and time series. Scale space has also
been applied to 3D MRI and CT imaging as mentioned
in some of the references.
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