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Introduction 
Automation has been a great boon to the 
field of high-throughput screening. The 
Complex Object Parametric Analyzer and 
Sorter (COPAS) platform (Union Biometrica, 
Holliston, MA, USA) is a tool that allows for 
rapid quantification of the fluorescence, size, and 
optical density of small biological specimens, 
such as Caenorhabditis elegans, Drosophila, 
and zebrafish. The COPAS utilizes micro-
fluidic approaches to draw intact live organisms 
through a fluorescence-compatible flow cell at 
extremely high rates (~50 animals per second) 
and quantifies the size [measured as object 
time-of-flight (TOF)], object optical density 
(EXT), and fluorescence emissions from up 
to three separate fluorescent channels for each 
animal. Because of its complete optical trans-
parency, rapid growth rates, and amenability 
to forward and reverse genetic approaches, C. 
elegans is an excellent model system for COPAS-
based high-throughput phenotypic and genetic 
studies (1–7). In many cases, these studies are 
enabled by the expression of fluorescent reporter 
transgenes (5,7,8), which often exhibit signif-
icant animal-to-animal variability. Because of 

this inherent variability in reporter expression, 
quantification of fluorescence by the COPAS 
within a population of animals is a more accurate 
phenotypic assessment than subjective visual 
inspection of individual animals (8). While 
the COPAS excels at the rapid collection of 
population-based data, the number of individual 
samples analyzed during a large-scale screen can 
easily reach into the thousands. Efficient analysis 
of such large COPAS data sets requires the use 
of automated computational tools, which have 
so far not been developed.

Currently, the COPAS can collect data 
in two modes, a single-sample mode and an 
autosampler 96-well mode. The single-sample 
mode permits very large sample sizes to be 
analyzed, which is a tremendous advantage for 
assaying highly variable or subtle phenotypes. 
However, because samples must be loaded one at 
a time into the sample chamber, the throughput 
of this mode is slow and labor-intensive and best 
suited to small-scale screens. The autosampler 
mode, enabled by the ReFLX adapter system, 
allows rapid analysis of liquid-based samples 
from 96-well plates, which provides tremendous 
sample throughput. However, the small volumes 
of 96-well assays limit the number of events per 

well to sample sizes much smaller than those 
obtained in the single-sample mode, making 
the autosampler mode well suited to large-scale 
genome-wide RNA interference (RNAi) or drug 
screens that utilize phenotypes of low variability. 
In the single-sample mode, each file contains the 
data from one sample. In the autosampler 96-well 
mode, each file contains the data from every well 
within a 96-well plate, classified according to 
well address. In both cases, the time required to 
filter, extract, and normalize the data; graph the 
summary results of the screen; compare results 
among plates; and statistically identify hits is a 
major rate-limiting step in the screening pipeline. 
Tools that facilitate the analysis of such large-
scale data sets would tremendously advance the 
throughput capability of COPAS-based assays. 
Such tools are currently unavailable.

Many different software environments are 
suitable for the analysis of large-scale COPAS 
data sets, including R, SAS, and Visual Basic. 
Another program suitable for such analyses is 
MATLAB (MathWorks, Natick, MA, USA). 
MATLAB is a computer interface program 
specifically designed for analysis of matrix-
based data sets, which is typically applied to 
the automation and standardization of image 
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analysis routines. However, MATLAB can 
just as easily be applied to analyze any type of 
numerical data presented in a matrix format. 
Since the COPAS data file structure is a 
standardized 26 × n matrix worksheet (where n 
is the number of events sorted), we reasoned that 
COPAS-generated data could be analyzed in 
the MATLAB environment. While analysis of 
COPAS data is possible in other programming 
environments, such as Microsoft Excel and 
Visual Basic, MATLAB offers several signif-
icant advantages for COPAS data analyses. 
First, MATLAB is an interpreted language, 
making it very easy to learn, use, and modify. 
It is compatible with many different operating 
systems (Windows, Linux, Macintosh, etc.) 
and is therefore accessible to almost all users, 
regardless of platform. Second, MATLAB can 
receive user input through custom graphical 
user interfaces (GUIs); end-users need not 
have any experience with MATLAB to 
execute prewritten MATLAB functions. 
Third, MATLAB provides access to a library 
of common data handling methods, graphical 
representations, and statistical tools that can be 
visualized in highly flexible ways using plotting 
and imaging commands integrated within the 
MATLAB program. Such commands must 
often be written de novo in other programming 
languages. Since MATLAB is written for 

science and engineering applications, this 
library is tailored for analysis of scientific data. 
Finally, MATLAB is widely used throughout 
the biomedical research community, providing 
access to a strong user base for teaching, imple-
mentation, and code sharing. These advan-
tages strongly support the use of MATLAB as 
the software of choice for analysis of COPAS 
data sets.

Herein, we describe a suite of MATLAB 
algorithms—COPAquant, COPAmulti, 
and COPAcompare—which extract, filter, 
normalize, graph, statistically analyze, and 
compare intra- and interplate values from 
COPAS Biosort data files acquired with the 
Advanced Acquisition Software Package 
(Union Biometrica). COPAquant analyzes data 
generated in the single-sample mode, whereas 
COPAmulti and COPAcompare analyze data 
obtained in the 96-well autosampling ReFLX 
mode. Automation of this step within the 
context of a high-throughput RNAi screen 
allowed us to rapidly move from secondary 
validations to hit identification. Although we 
have used it primarily for screens in C. elegans, 
the standard file format of COPAS data files, 
our simple GUI for multiwell plate analyses, 
and the freely available nature of the algorithms 
make it widely useful for analysis of any type of 
COPAS-generated data.

Materials and methods
Strains
The C. elegans strain TJ375 (hsp-16.2p::GFP) 
was used in this study and was obtained from 
the Caenorhabditis Genetics Center (University 
of Minnesota, Minneapolis, MN, USA). RNAi 
was conducted as described (7). Worms were 
dispensed to wells as L1s and given 4 days to 
grow to adulthood at 16°C. Worms were visually 
screened for basal GFP fluorescence, heat-shocked 
at 35°C for 3 h, allowed to recover at 16°C for 3 h, 
and then visually screened again for wells whose 
RNAi treatment prevented activation of the heat-
shock promoter. Clones identified as hits from the 
primary screen were rescreened in quadruplicate 
and compared with an empty vector control by 
quantitative analysis on the COPAS. Hits were 
considered verified if their normalized values were 
≤60% of the empty vector.

COPAS Biosort
A COPAS Biosort with Advanced Acqui-

sition Software Version 5.2.69 was utilized. 
Systems without Advanced Acquisition Software 
or earlier versions of the COPAS software that 
do not output data in 26-column format are not 
compatible with the software as written. Young 
adult animals fed either empty vector RNAi or 
gene-specific RNAi were sorted through the 
COPAS for quantification of GFP fluorescence. 
Worms were washed from plates with 5–10 mL 
deionized water, placed in the COPAS sample 
cup, and analyzed in the single-sample format. 
COPAS settings were as follows: gain ext, 1; 
green, 5; yellow, 1; red, 1; threshold signal, 30; 
TOF minimum, 1; photomultiplier tube (PMT) 
settings control green, 600; yellow, 0; red, 0. 
Worms were gated based on TOF to select for 
adults, and MATLAB analysis was performed 
specifically on this gated population. Although 
we prefiltered our data during screening, 
COPAquant allows users to filter raw data files 
based on gating status (gated, nongated, or all 
data). COPAmulti also filters based on gating 
status and will additionally filter on any COPAS-
measured parameter [TOF, EXT, fluorescent 
channel 1 (Ch1), fluorescent channel 2 (Ch2), 
or fluorescent channel 3 (Ch3)].

MATLAB
MATLAB version 7.0.1.24704 was used in the 
creation of this program. MATLAB M-files for 
COPAquant, COPAmulti, and COPAcompare, 
as well as sample data files and instructional 
documentation are freely available through our 
web site (www.med.upenn.edu/lamitinalab/
index.shtml).

Statistics
Bar graphs indicate mean values ± sd. In 
COPAmulti, we implement the mean ± k sd 
method for hit identification by calculating the 
plate mean ± plate sd and then determining 
which wells exceed this minimum sd threshold. 
The median absolute deviation (MAD) test 
was conducted using the MAD function in the 
MATLAB library. Multiple comparison t-tests 
were conducted using the t-test function in the 
MATLAB library. It should be noted that user-
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Figure 1. COPAS quantification of a heat shock–inducible GFP reporter. (A) Photomicrographs of hsp-16p::GFP at 
16°C or (B) after 3 h of heat-shock at 35°C and 3 h of recovery at 16°C. (C) Values of TOF and green fluores-
cence were recorded for each individual adult worm using the COPAS Biosort. (D) The reporter expression in 
each population was summarized by mean ± sd GFP expression normalized to the TOF and displayed here as 
the fold-change increase of heat-shocked worms over non–heat-shocked worms. n = 149 for each.

Table 1. Conversion of standard P values to Bonferroni-corrected P values

P value Bonferroni-corrected P value (for 96 samples)a

0.050 0.000521

0.025 0.000260

0.010 0.000104

0.005 0.000052

0.001 0.000010

aTo compute corrected P value for sample sizes other than 96, divide the desired P value by the number of 
samples being analyzed.
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defined P values must be corrected for multiple 
comparisons by dividing the selected P value by 
the number of samples analyzed (Bonferroni 
correction). A table of standard P values and 
Bonferroni-corrected P values for 96-well plate 
samples can be found in Table 1.

Results and discussion
Many R NAi screens performed in  
C. elegans are based on the in vivo expression of 
GFP reporters. One such screen under investi-
gation in our laboratory involves the temper-
ature-dependent regulation of an hsp-16p::GFP 
reporter. In this strain, GFP expression 

within young adult hermaphrodites (TOF = 
400–1000) is negligible under basal conditions 
(Figure 1A), but is highly induced in almost all 
cells after a brief heat shock and recovery period 
(Figure 1B) (see the “Materials and methods” 
section for a more detailed description of the 
experiment). Quantification of this induction 
among young adult animals revealed a wide 
distribution of GFP expression levels between 
individuals (Figure 1C), as has been previously 
reported (9,10). However, the population means 
accurately reflect the behavior of the transgene 
(Figure 1D). In order to identify regulators of 
the heat-shock response pathway in C. elegans, 
we conducted a genome-wide RNAi screen 

for suppressors and enhancers of heat shock–
dependent hsp-16p::GFP expression (Morton 
and Lamitina, unpublished data). GFP reporter 
expression was initially quantified by visual 
inspection. During the secondary validation 
screen, RNAi treatments were quantified using 
the COPAS Biosort in the single-sample mode 
of screening.

To facilitate analysis of the numerous 
COPAS data files generated by our RNAi screen, 
we wrote an algorithm, using the programming 
platform MATLAB, to automatically extract 
desired values from COPAS *.txt data files (one 
file per RNAi condition) (Table 2) . The COPAS 
exports data in a 26-column format, in which 
each row represents data from a single worm. The 
basic function of our COPAquant algorithm, 
COPASFun, imports numerical values 
from a COPAS data file. After data import, 
COPAquant queries the user as to whether 
the data to be analyzed should be filtered based 
on gating criteria, which are a unique combi-
nation of COPAS parameters (TOF, EXT, Ch1, 
Ch2, and Ch3) that are user-defined during data 
acquisition. COPAquant can be instructed to 
analyze gated data only, nongated data only, or 
all data. Using our hsp-16p::GFP screen data as 
an example, we chose to extract gated values for 
TOF, EXT, and fluorescence values for each of 
the three fluorescent channels. Because COPAS-
measured GFP fluorescence is related to object 
size (unpublished data), COPASFun can correct 
for this bias by normalizing to the object TOF, 
which is a direct measure of object size. These 
ratio values (Ch1/TOF, Ch2/TOF, Ch3/TOF) 
are entered into new columns. The resulting 
columns for our values of interest (TOF; EXT;, 
Ch1, Ch2, and Ch3; as well as their associated 
ratios) are then summarized with mean and sd. 
In the current screen for hsp-16::GFP regulators, 
meaningful yellow (Ch2) and red (Ch3) data 
were not obtained, since this strain does not 
express reporters in either of these fluorescent 
channels. These statistics, as well as the number 
of events in the sample (n), are then exported to 
the function COPASImp (Figure 2A).

The COPASImp function sends multiple 
COPAS *.txt files to COPASFun for analysis 
(Figure 2A). Once the MATLAB directory is 
set to the appropriate folder, COPASImp recog-
nizes and reads all *.txt files within the folder 
(Figure 2A). Once all the files in the folder 
have been analyzed, the results are presented 
in a table titled Results (which is automatically 
saved as the tab-delimited text file Results.txt 
for analysis outside of MATLAB) as well as in 
a structure labeled ImStruc (in which each cell 
contains the results for one sample). Following 
analysis, COPASImp queries the user as to 
which parameter should be represented in 
graphical format. The user-selected parameter 
is then plotted and displayed (Figure 2B).

In addition to the form of normalization 
discussed above, COPAquant V2 will also 
normalize all samples to a negative control 
sample to produce a relative fold-change value 
(Table 2). The program presents data in both 
the raw form (Figure 2, B and C) and in various 
normalized forms (Figure 2, D and E), using the 
lowest numbered file as the negative control 

Figure 2. Data analysis flowchart for COPAquant analysis of single-sample mode data. (A) Data flow is diagrammed 
for extraction of mean and sd of particular parameters from COPAS files. Red boxes represent tasks completed 
by the function COPASFun, while green boxes represent COPASImp tasks. (B) MATLAB was used to quantify 
fluorescence in an RNAi screen for suppressors of hsp-16p::GFP expression after heat-shock (35°C). Empty 
vector (EV) RNAi represents the negative control before and after heat shock. GFP and hsf-1 RNAi represent 
the positive controls for clones that decrease expression. HSF-1 is a transcription factor that promotes hsp-16.2 
expression. Hits are RNAi clones identified as repressing reporter expression in our screen. Values were normal-
ized to TOF. (C) TOF values for the same samples as in panel B were graphed. (D and E) COPASFun version 
2.0 normalizes each event value to the mean of the 16°C EV control and returns the new means and standard 
deviations. Shown are the normalized graphs for the data in panels B and C. For all conditions, n ≥ 41.

Table 2. Analysis properties of the COPAS MATLAB analysis software

Program Purpose Filtering capability Parameters analyzed Data normalization

COPAquant
Analysis of  

single-file data
Gating status

TOF, Ext,  
Ch1, Ch2, Ch3

None

COPAquant V2
Analysis of  

single-file data
Gating status

TOF, Ext,  
Ch1, Ch2, Ch3

File 1

COPAmulti
Analysis of  

96-well plate data
Gating status, TOF, EXT, 

Ch1, Ch2, Ch3
TOF, Ext,  

Ch1, Ch2, Ch3
Plate mean

COPAmulti V2
Analysis of  

96-well plate data
Gating status, TOF, EXT,  

Ch1, Ch2, Ch3
TOF, Ext,  

Ch1, Ch2, Ch3
User-selected well(s)

COPAcompare
Pair-wise comparison  

of replicate plates
Gating status, TOF, EXT,  

Ch1, Ch2, Ch3
TOF, Ext,  

Ch1, Ch2, Ch3
Plate mean

COPAcompare V2
Pair-wise comparison  

of replicate plates
Gating status, TOF, EXT,  

Ch1, Ch2, Ch3
TOF, Ext,  

Ch1, Ch2, Ch3
User-selected well(s)

A

B C

D E
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reference. The mean of the reference sample is 
calculated for each parameter, and each event 
within subsequent samples is divided by this 
value, creating a new, normalized column of 
values. The means of the normalized values, 
as well as their sd values, are exported back to 
COPASImp (Figure 2, D and E).

Using COPAquant, we dramatically 
enhanced the rate of data analysis in our screen 
for regulators of hsp-16p::GFP expression using 
the single-sample mode of COPAS screening. We 
were able to rapidly identify hits that affect GFP 
expression but not worm growth by analyzing 

both normalized GFP, as well as normalized 
TOF values (i.e., normalized to the negative 
control sample—empty vector RNAi in this 
case). Prior to implementation of COPAquant, 
the time required for manual analysis of a single 
day’s worth of COPAS data obtained using 
the single-sample acquisition mode frequently 
exceeded 8 h. Using COPAquant, data from 1 
day of sorting are now analyzed, normalized, and 
graphed within 10 s, which represents a ~3000-
fold increase in data analysis efficiency.

In addition to the single-sample sorting 
mode described above, some labs also employ 

an autosampling device called the ReFLX 
system. ReFLX-equipped COPAS systems 
sort and quantify events from individual wells 
of 96-well plates using the optional ReFLX 
sampler. Data from each well are stored within 
a single 26-column format file according to 
their row and column address. To make our 
MATLAB program applicable to ReFLX 
screening platforms, we modified our existing 
single-sample MATLAB code to read ReFLX 
files. The modified programs, COPAmulti and 
COPAcompare (Figure 3 and Table 2), read raw 
*.txt files generated by the ReFLX, filter and 
extract matrices for each well, and summarize 
useful parameters. Data from one or more 
96-well files (COPAmulti) or a replicate pair of 
96-well files (COPAcompare) are analyzed, and 
the data for each plate is stored in a separate cell of 
a Results Structure within MATLAB. For each 
plate analyzed, the raw data (n and well mean ± sd  
for each of eight different parameters for every 
well) are exported to a Results Structure, which 
can be accessed for export to other programs. To 
make COPAmulti as user-friendly as possible, 
we implemented a GUI within MATLAB 
that allows users to define several criteria for 
data analysis, including filtering cutoffs, the 
parameter to be utilized for analysis, and statis-
tical criteria and thresholds used to identify hits 
(Figure 4A). Since these criteria can be adjusted 
through the GUI and the data are rapidly reana-
lyzed, the effects of altered filtering and statistical 
criteria are easily determined.

Since ReFLX files offer unique analysis 
challenges and opportunities not present in 
single-sample data collection modes, we imple-
mented several additional features common 
to high-throughput multiwell-based RNAi 
screening for ReFLX file analysis. First, the 
mean of a user-selected parameter from each 
well is plotted in an 8 × 12 matrix heat map 
that is color-coded by well value (Figure 3B). 
This visualization strategy is a useful way to 
compare the data across a plate and often 
helps in the identification of plate edge effects, 
a common confounder in high-throughput  
RNAi screening (11). Second, instead of normal-
izing to a single negative control sample (as we 
do for single-sample data analysis), COPAmulti 
takes advantage of the large number of samples 
and uses the plate mean (calculated from the 
median 80% of nonzero value samples to remove 
effects of outliers) as the negative control value. 
This approach is a well-accepted data normal-
ization strategy for multiwell plate assays that 
can be uniformly applied across all plates (11). In 
addition to this normalization strategy, we also 
implemented a second approach (COPAmulti 
V2) that allows users to define the well(s) that 
contain negative control data through the 
COPAmulti GUI (Figure 4B). Using these 
calculated negative control reference values, we 
implement three common statistical tests for hit 
identification that have been previously utilized 
in RNAi screening formats: (i) mean ± k sd; (ii) 
median ± k MAD; and (iii) the multiple-compar-
isons t-test with Bonferroni correction. The 
specific significance test and threshold for each 
test is set within the user-adjustable GUI. Each 
test has specific strengths and weaknesses and 

Figure 3. Data analysis flowchart for COPAmulti and COPAcompare analysis of ReFLX multiwell mode data. (A) 
Data flow is diagrammed for extraction of well mean and sd of user-defined parameters from COPAS ReFLX 
files. Red boxes represent tasks completed by COPAmulti. Blue boxes indicate specific tasks completed by 
COPAcompare. Solid boxes indicate plots generated by COPAmulti or COPAcompare. (B) Heat map plot for 
the well means of Ch1/TOF data from a hypothetical 96-well ReFLX file. Note that the coloring is autoscaled 
according to the specific data for each plate. (C) Hit matrix plot indicating wells that passed a user-defined 
statistical threshold (in this case, MAD > 3 for Ch1/TOF). Hits are plotted in white, and non-hits are plotted 
in black. (D) Well index graph plotting the GUI-selected parameter for each well. If multiple 96-well plates are 
analyzed, all wells from all plates are plotted (i.e., plate 1, wells 1–96; plate 2, wells 97–192; plate 3, wells 
193–278; etc.).

Figure 4. Graphical user interface for COPAmulti. (A) Screen shot of the COPAmulti GUI demonstrating user-
configurable parameters for multiwell plate analyses. Ch1, Ch2, and Ch3 refer to the respective fluorescence 
channel (green, yellow, and red on most, but not all, COPAS systems). The parameter to be analyzed is selected 
from the drop-down menu in the middle of the GUI. Hit identification is accomplished via selection of one sta-
tistical test and associated threshold criteria. (B) Screen shot of the COPAmulti GUI that allows users to select 
negative control normalization well(s).

A

B C D
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in some cases may not represent the best statis-
tical approach for data analysis. Nonetheless, 
these methods are among the most commonly 
used approaches for analysis of high-throughput 
RNAi screening data (11), and the best approach 
is usually to compare results obtained with each 
statistical method. In general, the mean ± k sd 
test is the most commonly used hit identification 
technique for RNAi screening, due to its ease 
of calculation (12,13). Most screeners utilize a 
3-sd cutoff with this approach. However this 
method is sensitive to outlier data and frequently 
misses weaker positives. Decreasing the sd 
cutoff usually increases false positives to an 
unacceptably high rate. An alternative approach 
is the median ± k MAD test. Like the mean ± k 
sd test, MAD is relatively easy to calculate but 
is much less sensitive to outlier data. MAD also 
does a good job of identifying weak hits while 
controlling false positives (14). A shortcoming 
of MAD is that it is not easily linked to proba-
bility distributions and P values. Despite this 
shortcoming, others have recommended MAD 
as the method-of-choice for hit selection in high-
throughput RNAi screens (14). MAD values 
of ≥2 are commonly used for hit identification 
in genome-wide RNAi screens (14). A final 
common statistical test for RNAi screening is the 
multiple-comparison t-test. This statistic is easy 
to calculate (due to the large number of events in 
each well), but is extremely sensitive to outliers 
and requires multiple-comparison correction 
(11). For multiple comparison t-tests, the simplest 
form of correction is the Bonferroni correction, 
which scales the desired P value by the number 
of samples to obtain an equivalent multiple 
comparison P value. A table of Bonferroni-
corrected P values for common thresholds is 
listed in Table 1. In general, users should analyze 
their data with each statistical approach and 
utilize the method or combination of methods 
that most frequently identifies known positive 
controls. A major advantage of our software is 

that it allows users to rapidly adjust and test 
each of these statistical methods for hit identi-
fication through the simple GUI. For users that 
wish to perform statistical analysis of their data 
using other approaches, COPAmulti automati-
cally exports both summarized and raw data to 
delimited text files for further analysis.

Following statistical analysis, hits meeting 
user-determined thresholds are binarized in 
an 8 × 12 matrix, with hits plotted in white 
and non-hits plotted in black (Figure 3C). 
We also visualize all data from all plates using 
a well index plot (Figure 3D). Such plots are 
useful indicators of screen phenotypic behavior 
among plates and can help identify plates with 
phenotypic drift or substantial variance. For 
example, data in Figure 3 demonstrate lower 
values toward the end of the plate as compared 
with the beginning of the plate. Finally, since 
some users may screen in duplicate, we imple-
mented a separate algorithm, COPAcompare, 
that allows users to compare results between two 
plates (Figure 5). COPAcompare plots a user-
selected parameter for each well between two 
user-selected plates. The degree of overall plate-
to-plate correlation is determined by calculating 
the Pearson correlation coefficient (R), where an 
R value of 1 equals perfect correlation among all 
wells and -1 equals perfect opposite correlation 
among all wells.

We developed a suite of MATLAB-based 
programs to process large COPAS file data 
sets such as those associated with C. elegans 
RNAi screens. We implemented one program, 
COPAquant, for comparisons among data 
collected in the single-sample format, which is 
useful for small-scale screens with larger popula-
tions. We also implemented two additional 
programs, COPAmulti and COPAcompare, 
that use more advanced filtering, analysis, 
normalization, and statistical analysis of 
data from 96-well plates obtained using the 
COPAS ReFLX system. Both programs allow 
users to rapidly move from raw COPAS data 
to graphical data representation, replicate plate 
comparison, and hit identification without 
extensive knowledge of or experience with 
the programming environment. Our software 
greatly simplifies the analysis of COPAS data 
and fills a major gap in our need for data analysis 
tools for high-throughput screening using this 
platform. While we used this program in the 
validation steps of an RNAi screen for regulators 
of a heat shock–inducible reporter in C. elegans, 
the program is customized to the standard data 
format output by COPAS Biosort instruments 
and thus can be used in any type of COPAS 
application, including data obtained from other 
organisms.
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Figure 5. Two plate comparison using COPAcompare. 
Screen shot of the results from a hypothetical COPA-
compare two plate comparison. Two identical hypo-
thetical ReFLX files were compared with one another, 
resulting in a calculated Pearson correlation coeffi-
cient of 1. The calculated Pearson Correlation is 
displayed within the MATLAB command console, as 
illustrated in our online tutorials (www.med.upenn.
edu/lamitinalab/downloads.shtml). Each point on the 
graph represents a single well, with the x-coordinate 
representing data from plate 1 and the y-coordinate 
representing data from plate 2. Overall correlation 
was determined using the Pearson Correlation func-
tion within the MATLAB library.


