Impact of Islet Size on Graft Function

Lisa Stehno-Bittel, PhD, PT
University of Kansas Medical Center
Great Plain Diabetes Institute
Core Cell Death in Low-Insulin Secreting Islets

MacGregor et al, 2006
Human Islet Survival

Day 1

Day 12
Are Decreased Functional Outcomes for Large LIS Islets Due to Diffusion Barrier?
Dynamic partial differential equations for a spherical islet were solved numerically using finite-difference method in spherical coordinates.

Confirmed with 2 NBDG diffusion experiments.
Will reducing the diffusion barrier in large islets improve their function?

1) Cut islet into segments
2) Engineer islets
3) Make islets porous
• IMRA FCPA μJ laser
• Yb-fiber oscillator / amplifier system 1 μm wavelength output.
• Pulse widths to < 500 fs
Islets isolated from donor pancreas

- Disperse - maintain high cell viability
- Centrifuge onto biomaterial patch
How can we prove that islets are porous?
Optical Density (arbitrary units)

Intact Islets Porous Islets

*
Increasing Surface Area Increased Viability
A bar graph shows the comparison of Insulin Content (ng/IE) between low glucose and high glucose conditions. The graph includes two categories: Large and Small. The y-axis represents the Insulin Content (ng/IE) ranging from 0 to 90. The x-axis represents the glucose conditions: low glucose and high glucose.
Is there something inherently different between small and large islets?

Are these different sub-populations of islets?
Morphological analysis, first reported differences in size distribution, number and volume in several species (Haist & Pugh, *Am. J. Physiol.* 1947)

Morphological differences in human islets (Saito et al., *J. Exp. Med.* 1978)

3-D reconstruction demonstrates 2 types of islets (Baetens et al, *Science*, 1979)

Type of cell	Large Islets	Small Islets
Beta (insulin) | 52% | 57%
Alpha (glucagon) | 38% | 30%
Delta (somatostatin) | 11% | 6%
Total DNA content was 3 times higher in small islets than large when normalized for EI (rats).

Is there a difference in genetic regulation in large and small islets?
<table>
<thead>
<tr>
<th>Gene (protein product)</th>
<th>Fold difference in expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reg 1 Regenerating Gene</td>
<td>7.11 greater in small islets</td>
</tr>
<tr>
<td>Atk1 Protein kinase B</td>
<td>6.10 greater in small islets</td>
</tr>
<tr>
<td>Pdx-1 Pancreatic Duodenal Homeobox-1</td>
<td>2.41 greater in large islets</td>
</tr>
<tr>
<td>VEGF Vascular endothelial growth factor</td>
<td>12.04 greater in large islets</td>
</tr>
<tr>
<td>IAPP Islet Amyloid Polypeptide</td>
<td>2.55 greater in small islets</td>
</tr>
<tr>
<td>LDLR Low Density Lipoprotein Receptor</td>
<td>4.26 greater in large islets</td>
</tr>
<tr>
<td>Ins2 Pre-insulin</td>
<td>2.97 greater in large islets</td>
</tr>
<tr>
<td>Irs2 Insulin receptor substrate</td>
<td>15.27 greater in large islets</td>
</tr>
<tr>
<td>Ddit3 (part of CHOP 10) (differentiation and apoptosis)</td>
<td>4.56 greater in large islets</td>
</tr>
<tr>
<td>HNF4a Hepatocyte Nuclear Factor (beta cell development)</td>
<td>2.38 greater in small islets</td>
</tr>
<tr>
<td>GLUT 2/Slc2a2 Glucose transporter</td>
<td>8.88 greater in large islets</td>
</tr>
<tr>
<td>NOS2 Nitric Oxide Synthase</td>
<td>3.71 greater in small islets</td>
</tr>
<tr>
<td>Total Protein Content in an islet</td>
<td>µg/islet</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Small</td>
<td>0.04</td>
</tr>
<tr>
<td>Large</td>
<td>0.35</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total Protein Content per volume</th>
<th>µg/IE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small</td>
<td>0.58</td>
</tr>
<tr>
<td>Large</td>
<td>0.10</td>
</tr>
</tbody>
</table>
2D PAGE

Small > Large Red
Large > Small Blue
Islet Subpopulations

- **Small**: High insulin secreting islets
 - Under 125 μm diameter

- **Large**: Low insulin secreting islets
 - Over 150 μm diameter

- **CL**: Clear islets
 - Range from 5 – 200 μm
Summary

• Islet sub-populations are associated with different functions.
• Small islets are more viable in vitro
• Small islets secrete more insulin in vitro
• Transplantation with small islets reverse diabetes
• Reducing the diffusion barrier in large islets increases viability, but does not improve in vitro insulin secretion or islet transplantation outcome
• Small islets have greater insulin content
• Ultrastructural differences exist between large and small islets
• Small islets have a higher % of beta cells
• Small islets have more total protein content
• Selective genes are expressed in detectible levels in large islets that are not detected in small islets
• Selective proteins are found in either small or large islets
Summary

Why do we care?
Acknowledgements

- KU Diabetes Research Lab
 - Dr. Irina Smirnova
 - Dr. Lesya Novikova
 - S. Janette Williams
 - Floyd Huang
 - Maheshwari Mukherjee
 - Katie Holztman
 - Dr. Rajprasad Loganathan

- KU, Chemical & Petroleum Engineering
 - Dr. Cory Berkland
 - Dr. Kristin Lindsey Woo

- KU, Anatomy and Cell Biology
 - Dr. Ronal MacGregor

- Children’s Mercy Hospital
 - Dr. Wayne Moore
 - Dr. Karen Kover
 - Pei Tong
Acknowledgements

- Juvenile Diabetes Research Foundation
- Emilie Rosebud Diabetes Research Foundation
- NIH (NIDDK, NCRR)
- Union Biometrica
Sympathetic nerve fibers

Large diameter, myelinated

Small diameter thinly myelinated and medium diameter unmyelinated peptidergic

Sympathetic nerve fibers

Lindsay et al., 2006
Takahashi et al., Science 2002
Islet Diameter (μm)

<table>
<thead>
<tr>
<th>Islet Diameter (μm)</th>
<th>Number of Islets</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>200</td>
<td>20</td>
</tr>
<tr>
<td>300</td>
<td>30</td>
</tr>
<tr>
<td>400</td>
<td>40</td>
</tr>
<tr>
<td>500</td>
<td>50</td>
</tr>
<tr>
<td>600</td>
<td>60</td>
</tr>
</tbody>
</table>

- **Small Islets**
- **Large Islets**
Distribution of Cells the Same in Both

Figure 7

A.

B.

MacGregor et al, 2006